跳至主要內容
  • Hostloc 空間訪問刷分
  • 售賣場
  • 廣告位
  • 賣站?

4563博客

全新的繁體中文 WordPress 網站
  • 首頁
  • 使用预训练模型的 Alexnet 进行图片分类,准确率与网络数据不符,可能是什么原因导致的?
未分類
23 1 月 2022

使用预训练模型的 Alexnet 进行图片分类,准确率与网络数据不符,可能是什么原因导致的?

使用预训练模型的 Alexnet 进行图片分类,准确率与网络数据不符,可能是什么原因导致的?

資深大佬 : Richard14 19

预训练的意思是用 torchvision 里写好的 alexnet (修改最后一层),不是指导入训练好的,尝试用 quickstart 里的代码训练 cifar10 ,但是网上普遍查到的实验数据,准确率大概在 80%,78%左右,我迭代到收敛也只能得到 70%的准确率,这个差异产生的原因是啥呢?

完整代码:

from utils import * from pipeit import * import os,sys,time,pickle,random import matplotlib.pyplot as plt import numpy as np  import torch from torch import nn from torchvision import datasets, models from torch.utils.data import Dataset, DataLoader, TensorDataset from torchvision.transforms import ToTensor, Lambda, Resize, Compose, InterpolationMode  device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) torch.backends.cudnn.benchmark=True  # Download training data from open datasets. training_data = datasets.CIFAR10(     root=".\data\cifar10",     train=True,     download=True,     transform=Compose([         Resize((64, 64), InterpolationMode.BICUBIC),         ToTensor()     ]) )  # Download test data from open datasets. test_data = datasets.CIFAR10(     root=".\data\cifar10",     train=False,     download=True,     transform=Compose([         Resize((64, 64), InterpolationMode.BICUBIC),         ToTensor()     ]) )  def imshow(training_data):     labels_map = {         0: "plane",         1: "car",         2: "bird",         3: "cat",         4: "deer",         5: "dog",         6: "frog",         7: "horse",         8: "ship",         9: "truck",     }     cols, rows = 3, 3     figure = plt.figure(figsize=(8,8))     for i in range(1, cols * rows + 1):         sample_idx = torch.randint(len(training_data), size=(1,)).item()         img, label = training_data[sample_idx]         img = img.swapaxes(0,1)         img = img.swapaxes(1,2)         figure.add_subplot(rows, cols, i)         plt.title(labels_map[label])         plt.axis("off")         plt.imshow(img)     plt.show()  # imshow(training_data)  def train_loop(dataloader, net, loss_fn, optimizer):     size = len(dataloader)     train_loss = 0     for batch_idx, (X, tag) in enumerate(dataloader):         X, tag = X.to(device), tag.to(device)         pred = net(X)         loss = loss_fn(pred, tag)         train_loss += loss.item()          # Back propagation         optimizer.zero_grad()         loss.backward()         optimizer.step()     train_loss /= size      return train_loss  def test_loop(dataloader, model, loss_fn):     size = len(dataloader.dataset)     num_batches = len(dataloader)     test_loss, correct = 0, 0      with torch.no_grad():         for X, y in dataloader:             X, y = X.to(device), y.to(device)             pred = model(X)             test_loss += loss_fn(pred, y).item()             correct += (pred.argmax(1) == y).type(torch.float).sum().item()      test_loss /= num_batches     correct /= size     return test_loss, correct  net = models.alexnet().to(device) net.classifier[6] = nn.Linear(4096, 10).to(device)  learning_rate = 0.01 batch_size = 128 weight_decay = 0  train_dataloader = DataLoader(training_data, batch_size = batch_size) test_dataloader = DataLoader(test_data, batch_size = batch_size)  loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr = learning_rate)  epochs = 50 for t in range(epochs):     print(f"Epoch {t+1}n-------------------------------")     st_time = time.time()     train_loss = train_loop(train_dataloader, net, loss_fn, optimizer)     test_loss, correct = test_loop(test_dataloader, net, loss_fn)     print(f"Train loss: {train_loss:>8f}, Test loss: {test_loss:>8f}, Accuracy: {(100*correct):>0.1f}%, Epoch time: {time.time() - st_time:.2f}sn") print("Done!") torch.save(net.state_dict(), 'alexnet-pre1.model') 

最后收敛时的数据在这样:

Epoch 52 ------------------------------- Train loss: 0.399347, Test loss: 0.970927, Accuracy: 70.3%, Epoch time: 17.20s 

大佬有話說 (1)

  • 資深大佬 : KangolHsu

    输入的图片 64*64 ?是不是有点小啊

文章導覽

上一篇文章
下一篇文章

AD

其他操作

  • 登入
  • 訂閱網站內容的資訊提供
  • 訂閱留言的資訊提供
  • WordPress.org 台灣繁體中文

51la

4563博客

全新的繁體中文 WordPress 網站
返回頂端
本站採用 WordPress 建置 | 佈景主題採用 GretaThemes 所設計的 Memory
4563博客
  • Hostloc 空間訪問刷分
  • 售賣場
  • 廣告位
  • 賣站?
在這裡新增小工具