解决动态规划问题就是找「状态」和「选择」。
从左到右走过这一排房子,在每间房子前都有两种选择:抢或者不抢。
如果你抢了这间房子,那么你肯定不能抢相邻的下一间房子了,只能从下下间房子开始做选择。
如果你不抢这间房子,那么你可以走到下一间房子前,继续做选择。
当你走过了最后一间房子后,你就没得抢了,能抢到的钱显然是 0 ( base case )。
以上的逻辑很简单吧,其实已经明确了「状态」和「选择」:你面前房子的索引就是状态,抢和不抢就是选择。
在两个选择中,每次都选更大的结果,最后得到的就是最多能抢到的 money:
// 主函数
public int rob(int[] nums) {
return dp(nums, 0);
}
// 返回 nums[start..] 能抢到的最大值
private int dp(int[] nums, int start) {
if (start >= nums.length) {
return 0;
}
int res = Math.max(
// 不抢,去下家
dp(nums, start + 1),
// 抢,去下下家
nums[start] + dp(nums, start + 2)
);
return res;
}
明确了状态转移,就可以发现对于同一`start`位置,是存在重叠子问题的
盗贼有多种选择可以走到这个位置,如果每次到这都进入递归,所以说存在重叠子问题,可以用备忘录进行优化:
private int[] memo;
// 主函数
public int rob(int[] nums) {
// 初始化备忘录
memo = new int[nums.length];
Arrays.fill(memo, -1);
// 强盗从第 0 间房子开始抢劫
return dp(nums, 0);
}
// 返回 dp[start..] 能抢到的最大值
private int dp(int[] nums, int start) {
if (start >= nums.length) {
return 0;
}
// 避免重复计算
if (memo[start] != -1) return memo[start];
int res = Math.max(dp(nums, start + 1),
nums[start] + dp(nums, start + 2));
// 记入备忘录
memo[start] = res;
return res;
}
这就是自顶向下的动态规划解法,我们也可以略作修改,写出自底向上的解法:
int rob(int[] nums) {
int n = nums.length;
// dp[i] = x 表示:
// 从第 i 间房子开始抢劫,最多能抢到的钱为 x
// base case: dp[n] = 0
int[] dp = new int[n + 2];
for (int i = n – 1; i >= 0; i–) {
dp[i] = Math.max(dp[i + 1], nums[i] + dp[i + 2]);
}
return dp[0];
}
我们又发现状态转移只和 dp[i]最近的两个状态有关,所以可以进一步优化,将空间复杂度降低到 O(1)
int rob(int[] nums) {
int n = nums.length;
// 记录 dp[i+1] 和 dp[i+2]
int dp_i_1 = 0, dp_i_2 = 0;
// 记录 dp[i]
int dp_i = 0;
for (int i = n – 1; i >= 0; i–) {
dp_i = Math.max(dp_i_1, nums[i] + dp_i_2);
dp_i_2 = dp_i_1;
dp_i_1 = dp_i;
}
return dp_i;
}